Journal Article FZJ-2015-05429

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Solar water splitting with earth-abundant materials using amorphous silicon photocathodes and Al/Ni contacts as hydrogen evolution catalyst

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2015
Elsevier Amsterdam [u.a.]

Chemical physics letters 638, 25-30 () [10.1016/j.cplett.2015.08.018]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: An all earth-abundant and precious metal-free photocathode based on a low-temperature fabricated amorphous silicon tandem junction is demonstrated to be an efficient device for solar water splitting. With a particular designed Al/Ni layer stack as photocathode/electrolyte contact an onset potential for cathodic photocurrent of 1.7 V vs. RHE and a saturation photocurrent density of 7.2 mA/cm2 were achieved. For a high-cost alternative with a Ag/Pt layer stack an even higher photocathode performance is demonstrated. Above all we present an approach for a dedicated photovoltaic and electrochemical development for solar water splitting.

Classification:

Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 126 - Solar Fuels (POF3-126) (POF3-126)
  2. 121 - Solar cells of the next generation (POF3-121) (POF3-121)
  3. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2015
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-3
Workflow collections > Public records
IEK > IEK-5
Publications database

 Record created 2015-08-27, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)