Journal Article FZJ-2015-05614

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue

 ;  ;  ;  ;  ;

2015
The Royal Society London

Interface 12(111), 20150734 () [10.1098/rsif.2015.0734]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: The neuroimaging technique three-dimensional polarized light imaging (3D-PLI) provides a high-resolution reconstruction of nerve fibres in human post-mortem brains. The orientations of the fibres are derived from birefringence measurements of histological brain sections assuming that the nerve fibres—consisting of an axon and a surrounding myelin sheath—are uniaxial birefringent and that the measured optic axis is oriented in the direction of the nerve fibres (macroscopic model). Although experimental studies support this assumption, the molecular structure of the myelin sheath suggests that the birefringence of a nerve fibre can be described more precisely by multiple optic axes oriented radially around the fibre axis (microscopic model). In this paper, we compare the use of the macroscopic and the microscopic model for simulating 3D-PLI by means of the Jones matrix formalism. The simulations show that the macroscopic model ensures a reliable estimation of the fibre orientations as long as the polarimeter does not resolve structures smaller than the diameter of single fibres. In the case of fibre bundles, polarimeters with even higher resolutions can be used without losing reliability. When taking the myelin density into account, the derived fibre orientations are considerably improved.

Classification:

Contributing Institute(s):
  1. Strukturelle und funktionelle Organisation des Gehirns (INM-1)
  2. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 574 - Theory, modelling and simulation (POF3-574) (POF3-574)
  2. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)
  3. SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017) (HGF-SMHB-2013-2017)
  4. HBP - The Human Brain Project (604102) (604102)

Appears in the scientific report 2015
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-1
Workflow collections > Public records
Institute Collections > JSC
Publications database

 Record created 2015-09-11, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)