Journal Article PreJuSER-22758

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
External Drive to Inhibitory Cells Induces Alternating Episodes of High- and Low-Amplitude Oscillations

 ;  ;  ;  ;  ;  ;  ;

2012
Public Library of Science San Francisco, Calif.

PLoS Computational Biology 8, e1002666 () [10.1371/journal.pcbi.1002666]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Electrical oscillations in neuronal network activity are ubiquitous in the brain and have been associated with cognition and behavior. Intriguingly, the amplitude of ongoing oscillations, such as measured in EEG recordings, fluctuates irregularly, with episodes of high amplitude alternating with episodes of low amplitude. Despite the widespread occurrence of amplitude fluctuations in many frequency bands and brain regions, the mechanisms by which they are generated are poorly understood. Here, we show that irregular transitions between sub-second episodes of high- and low-amplitude oscillations in the alpha/beta frequency band occur in a generic neuronal network model consisting of interconnected inhibitory and excitatory cells that are externally driven by sustained cholinergic input and trains of action potentials that activate excitatory synapses. In the model, we identify the action potential drive onto inhibitory cells, which represents input from other brain areas and is shown to desynchronize network activity, to be crucial for the emergence of amplitude fluctuations. We show that the duration distributions of high-amplitude episodes in the model match those observed in rat prefrontal cortex for oscillations induced by the cholinergic agonist carbachol. Furthermore, the mean duration of high-amplitude episodes varies in a bell-shaped manner with carbachol concentration, just as in mouse hippocampus. Our results suggest that amplitude fluctuations are a general property of oscillatory neuronal networks that can arise through background input from areas external to the network.

Keyword(s): J


Note: OJAG was supported by a grant from the EC Marie Curie Research and Training Network (RTN), NEURoVERS-it 019247. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Contributing Institute(s):
  1. Molekulare Organisation des Gehirns (INM-2)
Research Program(s):
  1. Funktion und Dysfunktion des Nervensystems (FUEK409) (FUEK409)
  2. 89571 - Connectivity and Activity (POF2-89571) (POF2-89571)

Appears in the scientific report 2012
Database coverage:
Medline ; Creative Commons Attribution CC BY 3.0 ; DOAJ ; OpenAccess ; BIOSIS Previews ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2012-11-13, last modified 2021-01-29