Journal Article FZJ-2015-06113

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain

 ;  ;  ;  ;  ;  ;  ;

2015
Wiley-Blackwell Oxford [u.a.]

Journal of sleep research 24(5), 549 - 558 () [10.1111/jsr.12300]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day(-1) for 5 consecutive days (SR1-SR5), followed by 3 unrestricted recovery sleep days (R1-R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26-31% from SR1 to R1). A decrease in β-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction.

Classification:

Contributing Institute(s):
  1. Molekulare Organisation des Gehirns (INM-2)
Research Program(s):
  1. 571 - Connectivity and Activity (POF3-571) (POF3-571)

Appears in the scientific report 2015
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-2
Workflow collections > Public records
Publications database

 Record created 2015-10-12, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)