Journal Article FZJ-2015-06894

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Altered sensorimotor activation patterns in idiopathic dystonia - an activation likelihood estimation meta-analysis of functional brain imaging studies

 ;  ;  ;  ;  ;

2016
Wiley-Liss New York, NY

Human brain mapping 37(2), 547–557 () [10.1002/hbm.23050]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Dystonia is characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements or postures. Functional neuroimaging studies have yielded abnormal task-related sensorimotor activation in dystonia, but the results appear to be rather variable across studies. Further, study size was usually small including different types of dystonia. Here we performed an activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies in patients with primary dystonia to test for convergence of dystonia-related alterations in task-related activity across studies. Activation likelihood estimates were based on previously reported regional maxima of task-related increases or decreases in dystonia patients compared to healthy controls. The meta-analyses encompassed data from 179 patients with dystonia reported in 18 functional neuroimaging studies using a range of sensorimotor tasks. Patients with dystonia showed bilateral increases in task-related activation in the parietal operculum and ventral postcentral gyrus as well as right middle temporal gyrus. Decreases in task-related activation converged in left supplementary motor area and left postcentral gyrus, right superior temporal gyrus and dorsal midbrain. Apart from the midbrain cluster, all between-group differences in task-related activity were retrieved in a sub-analysis including only the 14 studies on patients with focal dystonia. For focal dystonia, an additional cluster of increased sensorimotor activation emerged in the caudal cingulate motor zone. The results show that dystonia is consistently associated with abnormal somatosensory processing in the primary and secondary somatosensory cortex along with abnormal sensorimotor activation of mesial premotor and right lateral temporal cortex.

Classification:

Contributing Institute(s):
  1. Strukturelle und funktionelle Organisation des Gehirns (INM-1)
Research Program(s):
  1. 571 - Connectivity and Activity (POF3-571) (POF3-571)
  2. HBP - The Human Brain Project (604102) (604102)

Appears in the scientific report 2016
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; BIOSIS Previews ; Current Contents - Life Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2015-11-27, last modified 2021-01-29