Journal Article FZJ-2016-00409

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2016
RSC Publ. Cambridge

Energy & environmental science 9(1), 145 - 154 () [10.1039/C5EE02393A]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We report on the development of high performance triple and quadruple junction solar cells made of amorphous (a-Si:H) and microcrystalline silicon (μc-Si:H) for the application as photocathodes in integrated photovoltaic–electrosynthetic devices for solar water splitting. We show that the electronic properties of the individual sub cells can be adjusted such that the photovoltages of multijunction devices cover a wide range of photovoltages from 2.0 V up to 2.8 V with photovoltaic efficiencies of 13.6% for triple and 13.2% for quadruple cells. The ability to provide self-contained solar water splitting is demonstrated in a PV-biased electrosynthetic (PV-EC) cell. With the developed triple junction photocathode in the a-Si:H/a-Si:H/μc-Si:H configuration we achieved an operation photocurrent density of 7.7 mA cm−2 at 0 V applied bias using a Ag/Pt layer stack as photocathode/electrolyte contact and ruthenium oxide as counter electrode. Assuming a faradaic efficiency of 100%, this corresponds to a solar-to-hydrogen efficiency of 9.5%. The quadruple junction device provides enough excess voltage to substitute precious metal catalyst, such as Pt by more earth-abundant materials, such as Ni without impairing the solar-to-hydrogen efficiency.

Classification:

Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 121 - Solar cells of the next generation (POF3-121) (POF3-121)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2016
Database coverage:
Medline ; Creative Commons Attribution CC BY 3.0 ; OpenAccess ; Allianz-Lizenz / DFG ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 20 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-3
Workflow collections > Public records
IEK > IEK-5
Publications database
Open Access

 Record created 2016-01-13, last modified 2024-07-12