Journal Article FZJ-2016-01444

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Atomic-layer-controlled deposition of TEMAZ/O2–ZrO2 oxidation resistance inner surface coatings for solid oxide fuel cells

 ;  ;  ;  ;  ;

2016
Elsevier Science Amsterdam [u.a.]

Surface and coatings technology 288, 211 - 220 () [10.1016/j.surfcoat.2016.01.026]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Solid oxide fuel cells (SOFCs) directly convert the chemical energy of fuels into electrical energy with high efficiency. Under certain conditions oxygen can diffuse to the Ni/8 mol% Y2O3-doped ZrO2 substrate of anode-supported SOFCs, then the nickel re-oxidizes, leading to cracks in the electrolyte and cell failure thus limiting the durability of SOFCs. In order to improve the stability of SOFCs with respect to oxidation, the inner surface of the porous substrate is coated with a ZrO2 oxidation resistance layer using atomic layer deposition (ALD) with the precursors tetrakis(ethylmethylamino)zirconium (TEMAZ) and molecular oxygen. This TEMAZ/O2–ZrO2 ALD process has not yet been reported in the literature and hence, the development of the process is described in this paper. The inner surface of the porous substrate is coated with ZrO2 and the film thickness is compared with theoretical predictions, verifying the ALD model. Furthermore, the coating depth can be estimated using a simple analytical equation. The ALD ZrO2 film protects the nickel in the substrate against oxidation for at least 17 re-oxidation/re-reduction cycles. The ZrO2 inner surface coating is a highly promising candidate for enhancing the resistance of SOFCs to re-oxidation because of the excellent oxidation resistance and good cycling stability of the film.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 135 - Fuel Cells (POF3-135) (POF3-135)
  2. SOFC - Solid Oxide Fuel Cell (SOFC-20140602) (SOFC-20140602)
  3. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2016
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; IF < 5 ; JCR ; NationallizenzNationallizenz ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-2
Workflow collections > Public records
IEK > IEK-1
Publications database

 Record created 2016-02-01, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)