Journal Article FZJ-2016-01739

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Phosphorus forms in forest soil colloids as revealed by liquid-state 31P-NMR

 ;  ;  ;  ;

2016
Wiley-VCH Weinheim

Journal of plant nutrition and soil science 179(2), 159–167 () [10.1002/jpln.201500119]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Nanoparticles and colloids affect the storage and hence the availability of P in forest ecosystems. We investigated the fine colloids present in forest soils and their association with inorganic and organic P. To differentiate between the different P forms, we performed liquid-state 31P-nucelar magnetic resonance (31P-NMR) measurements on forest bulk soil extracts, on colloid extracts and on the electrolyte phase of their soil suspensions. The 31P-NMR spectra indicated that soil nanoparticles and colloids were more enriched with organic than with inorganic P forms compared to the electrolyte phase. The P concentration was enriched in the colloidal fraction in comparison to the bulk soil and the phosphate diesters were more dominant in the colloidal fraction when compared to the bulk soil. The colloidal P-diester to P-monoester ratios were 2 to 3 times higher in the colloidal fraction than in the bulk soil. In contrast, relatively large percentages of inorganic P were found in the electrolyte phase

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
  2. Analytik (ZEA-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2016
Database coverage:
Medline ; OpenAccess ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ZEA > ZEA-3
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2016-02-25, last modified 2022-09-30