Journal Article FZJ-2016-01906

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Quantum decoherence and thermalization at finite temperature within the canonical-thermal-state ensemble

 ;  ;  ;  ;  ;

2016
APS College Park, Md.

Physical review / A 93(3), 032110 () [10.1103/PhysRevA.93.032110]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We study measures of decoherence and thermalization of a quantum system S in the presence of a quantum environment (bath) E. The entirety S+E is prepared in a canonical-thermal state at a finite temperature; that is, the entirety is in a steady state. Both our numerical results and theoretical predictions show that measures of the decoherence and the thermalization of S are generally finite, even in the thermodynamic limit, when the entirety S+E is at finite temperature. Notably, applying perturbation theory with respect to the system-environment coupling strength, we find that under common Hamiltonian symmetries, up to first order in the coupling strength it is sufficient to consider S uncoupled from E, but entangled with E, to predict decoherence and thermalization measures of S. This decoupling allows closed-form expressions for perturbative expansions for the measures of decoherence and thermalization in terms of the free energies of S and of E. Large-scale numerical results for both coupled and uncoupled entireties with up to 40 quantum spins support these findings.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
  2. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)
  2. Manipulation and dynamics of quantum spin systems (jjsc09_20120501) (jjsc09_20120501)

Appears in the scientific report 2016
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-HPC
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2016-03-14, last modified 2023-02-17