Journal Article PreJuSER-432

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Isomer-specific degradation and endocrine disrupting activity of nonylphenols

 ;  ;  ;  ;  ;  ;  ;

2008
American Chemical Society Columbus, Ohio

Environmental Science & Technology 42, 6399 - 6408 () [10.1021/es800577a]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Degradation of technical nonylphenol by Sphingobium xenophagum Bayram led to a significant shift in the isomers composition of the mixture. By means of gas chromatography-mass spectrometry, we could observe a strong correlation between transformation of individual isomers and their a-substitution pattern, as expressed by their assignment to one of six mass spectrometric groups. As a rule, isomers with less bulkiness at the a-carbon and those with an optimally sized main alkyl chain (4-6 carbon atoms) were degraded more efficiently. By mass spectrometric analysis, we identified the two most recalcitrant main isomers of the technical mixture (Group4) as 4-(1,2-dimethyl-1-propylbutyl) phenols (NP193a and NP193b, which are diastereomers with a bulky alpha-CH3, alpha-CH(CH3)C2H5 substitution. Our experiments with strain Bayram show that the selective enrichment of isomers with bulky a-substitutions observed in nonylphenol fingerprints of natural systems can be caused by microbial ipso-hydroxylation. Based on the yeast estrogen assay (YES), we established an estrogenicity ranking with a variety of single isomers and compared it to rankings obtained with different reporter cell systems. Structure-activity relationships derived from these data suggest that Group 4 isomers have a high estrogenic potency. This indicates a substantial risk that enrichment of highly estrogenic isomers during microbial degradation by ipso-substitution will increase the specific estrogenicity of aging material.

Keyword(s): J


Note: This research was supported by the Swiss National Science Foundation within the framework of the National Research Programme NFP50 "Endocrine Disruptors: Relevance to Humans, Animals, and Ecosystems". We thank Dr. Ian Purvis and others at GlaxoSmithKline for kindly supplying the genetically modified yeast strain.

Research Program(s):
  1. Terrestrische Umwelt (P24)

Appears in the scientific report 2008
Database coverage:
Embargoed OpenAccess ; JCR ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-2
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2012-11-13, letzte Änderung am 2020-12-17


Published on 2008-07-23. Available in OpenAccess from 2009-07-23.:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)