Journal Article FZJ-2016-06153

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Effects of root water uptake formulation on simulated water and energy budgets at local and basin scales

 ;  ;  ;

2016
Springer Berlin

Environmental earth sciences 75(4), 316 () [10.1007/s12665-015-5041-z]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Roots connect water stored beneath the Earth’s surface to water in the atmosphere. The fully integrated hydrologic model ParFlow coupled to the Common Land Model is used to investigate the influence of the root uptake formulation on simulated water and energy fluxes and budgets at local and watershed scales. The effects of four functional representations of vegetation water stress and plant wilting behavior are evaluated in the semi-arid Little Washita watershed of the Southern Great Plains, USA. Monthly mean latent and sensible heat fluxes differ by more than 25 W m−2 over much of the study area during hot, dry summer conditions. This difference indicates that the root uptake formulation has a substantial impact on simulated land energy fluxes and land–atmosphere interactions. Differences in annual evapotranspiration and stream discharge over the watershed exceed 14.5 and 55.5 % between simulations, respectively, demonstrating significant impacts on simulated water budgets. Notably, the analysis reveals that spatial variability in the sensitivity of local-scale water and energy fluxes to root uptake formulation is primarily driven by feedbacks between water table dynamics, soil moisture, and land energy fluxes. These results have important implications for model development, calibration, and validation.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2016
Database coverage:
BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; NCBI Molecular Biology Database ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-3
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2016-11-14, letzte Änderung am 2021-01-29


Restricted:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)