Journal Article FZJ-2016-07941

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Fast detection of leaf pigments and isoprenoids for ecophysiological studies, plant phenotyping and validating remote-sensing of vegetation

 ;

2016
Wiley-Blackwell Oxford [u.a.]

Physiologia plantarum 158(4), 369 - 381 () [10.1111/ppl.12512]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Rapid developments in remote-sensing of vegetation and high-throughput precision plant phenotyping promise a range of real-life applications using leaf optical properties for non-destructive assessment of plant performance. Use of leaf optical properties for assessing plant performance requires the ability to use photosynthetic pigments as proxies for physiological properties and the ability to detect these pigments fast, reliably and at low cost. We describe a simple and cost-effective protocol for the rapid analysis of chlorophylls, carotenoids and tocopherols using high-performance liquid chromatography (HPLC). Many existing methods are based on the expensive solvent acetonitrile, take a long time or do not include lutein epoxide and α-carotene. We aimed to develop an HPLC method which separates all major chlorophylls and carotenoids as well as lutein epoxide, α-carotene and α-tocopherol. Using a C30-column and a mobile phase with a gradient of methanol, methyl-tert-butyl-ether (MTBE) and water, our method separates the above pigments and isoprenoids within 28 min. The broad applicability of our method is demonstrated using samples from various plant species and tissue types, e.g. leaves of Arabidopsis and avocado plants, several deciduous and conifer tree species, various crops, stems of parasitic dodder, fruit of tomato, roots of carrots and Chlorella algae. In comparison to previous methods, our method is very affordable, fast and versatile and can be used to analyze all major photosynthetic pigments that contribute to changes in leaf optical properties and which are of interest in most ecophysiological studies.

Keyword(s): Biology (2nd)

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)

Appears in the scientific report 2016
Database coverage:
Medline ; OpenAccess ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-2
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2016-12-21, letzte Änderung am 2021-01-29


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)