Journal Article FZJ-2017-03442

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Static and dynamic light scattering by red blood cells: A numerical study

 ;  ;  ;  ;

2017
PLoS Lawrence, Kan.

PLoS one 12(5), e0176799 () [10.1371/journal.pone.0176799]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods—multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring.

Classification:

Contributing Institute(s):
  1. Theorie der Weichen Materie und Biophysik (IAS-2)
  2. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 553 - Physical Basis of Diseases (POF3-553) (POF3-553)
  2. Blood Flow Resistance in Microvascular Networks (jics21_20131101) (jics21_20131101)

Appears in the scientific report 2017
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; BIOSIS Previews ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
JARA > JARA > JARA-JARA\-HPC
Institutssammlungen > IAS > IAS-2
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2017-05-08, letzte Änderung am 2022-09-30


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)