Journal Article FZJ-2017-04380

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis

 ;  ;  ;

2017
MDPI Basel

Energies 10(7), 860 - () [10.3390/en10070860]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Industrial hydrogen production via alkaline water electrolysis (AEL) is a mature hydrogen production method. One argument in favor of AEL when supplied with renewable energy is its environmental superiority against conventional fossil-based hydrogen production. However, today electricity from the national grid is widely utilized for industrial applications of AEL. Also, the ban on asbestos membranes led to a change in performance patterns, making a detailed assessment necessary. This study presents a comparative Life Cycle Assessment (LCA) using the GaBi software (version 6.115, thinkstep, Leinfelden-Echterdingen, Germany), revealing inventory data and environmental impacts for industrial hydrogen production by latest AELs (6 MW, Zirfon membranes) in three different countries (Austria, Germany and Spain) with corresponding grid mixes. The results confirm the dependence of most environmental effects from the operation phase and specifically the site-dependent electricity mix. Construction of system components and the replacement of cell stacks make a minor contribution. At present, considering the three countries, AEL can be operated in the most environmentally friendly fashion in Austria. Concerning the construction of AEL plants the materials nickel and polytetrafluoroethylene in particular, used for cell manufacturing, revealed significant contributions to the environmental burden.

Classification:

Contributing Institute(s):
  1. Systemforschung und Technologische Entwicklung (IEK-STE)
Research Program(s):
  1. 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153) (POF3-153)

Appears in the scientific report 2017
Database coverage:
Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Current Contents - Engineering, Computing and Technology ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-STE
Publications database
Open Access

 Record created 2017-06-29, last modified 2022-09-30