Journal Article FZJ-2017-04561

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects

 ;  ;  ;  ;

2017
Inst. Woodbury, NY

Physical review / E 96(1), 013201 () [10.1103/PhysRevE.96.013201]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: We investigate how next-generation laser pulses at 10–200 PW interact with a solid target in the presence ofa relativistically underdense preplasma produced by amplified spontaneous emission (ASE). Laser hole boringand relativistic transparency are strongly restrained due to the generation of electron-positron pairs and γ -rayphotons via quantum electrodynamics (QED) processes. A pair plasma with a density above the initial preplasmadensity is formed, counteracting the electron-free channel produced by hole boring. This pair-dominated plasmacan block laser transport and trigger an avalanchelike QED cascade, efficiently transferring the laser energyto the photons. This renders a 1-μm scale-length, underdense preplasma completely opaque to laser pulses atthis power level. The QED-induced opacity therefore sets much higher contrast requirements for such a pulsein solid-target experiments than expected by classical plasma physics. Our simulations show, for example, thatproton acceleration from the rear of a solid with a preplasma would be strongly impaired.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)

Appears in the scientific report 2017
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2017-07-10, last modified 2023-02-17