Journal Article FZJ-2017-06903

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Excitation Temperature and Constituent Concentration Profiles of the Plasma Jet Under Plasma Spray-PVD Conditions

 ;  ;

2017
Springer Science + Business Media B.V. Dordrecht

Plasma chemistry and plasma processing 37(5), 1293 - 1311 () [10.1007/s11090-017-9832-8]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Plasma spray-physical vapor deposition (PS-PVD) is a promising technology to produce columnar structured thermal barrier coatings with excellent cyclic lifetime. The characteristics of plasma jets generated by standard plasma gases in the PS-PVD process, argon and helium, have been studied by optical emission spectroscopy. Abel inversion was introduced to reconstruct the spatial characteristics. In the central area of the plasma jet, the ionization of argon was found to be one of the reasons for low emission of atomic argon. Another reason could be the demixing so that helium prevails around the central axis of the plasma jet. The excitation temperature of argon was calculated by the Boltzmann plot method. Its values decreased from the center to the edge of the plasma jet. Applying the same method, a spurious high excitation temperature of helium was obtained, which could be caused by the strong deviation from local thermal equilibrium of helium. The addition of hydrogen into plasma gases leads to a lower excitation temperature, however a higher substrate temperature due to the high thermal conductivity induced by the dissociation of hydrogen. A loading effect is exerted by the feedstock powder on the plasma jet, which was found to reduce the average excitation temperature considerably by more than 700 K in the Ar/He jet.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2017
Database coverage:
OpenAccess ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-2
Workflow collections > Public records
IEK > IEK-1
Publications database
Open Access

 Record created 2017-10-09, last modified 2024-07-11