Journal Article FZJ-2017-07076

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Influence of temperature on the aging behavior of 18650-type lithium ion cells: A comprehensive approach combining electrochemical characterization and post-mortem analysis

 ;  ;  ;  ;  ;

2017
Elsevier New York, NY [u.a.]

Journal of power sources 342, 88 - 97 () [10.1016/j.jpowsour.2016.12.040]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: The understanding of the aging behavior of lithium ion batteries in automotive and energy storage applications is essential for the acceptance of the technology. Therefore, aging experiments were conducted on commercial 18650-type state-of-the-art cells to determine the influence of the temperature during electrochemical cycling on the aging behavior of the different cell components. The cells, based on Li(Ni0.5Co0.2Mn0.3)O2 (NCM532)/graphite, were aged at 20 °C and 45 °C to different states of health. The electrochemical performance of the investigated cells shows remarkable differences depending on the cycling temperature. At contrast to the expected behavior, the cells cycled at 45 °C show a better electrochemical performance over lifetime than the cells cycled at 20 °C. Comprehensive post-mortem analyses revealed the main aging mechanisms, showing a complex interaction between electrodes and electrolyte. The main aging mechanisms of the cells cycled at 45 °C differ strongly at contrast to cells cycled at 20 °C. A strong correlation between the formed SEI, the electrolyte composition and the electrochemical performance over lifetime was observed.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2017
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
IEK > IEK-12
Publications database

 Record created 2017-10-18, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)