Journal Article FZJ-2017-07633

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI)

 ;  ;  ;  ;  ;

2017
BioMed Central London

Plant methods 13(1), 102 () [10.1186/s13007-017-0252-9]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: BackgroundRoot systems are highly plastic and adapt according to their soil environment. Studying the particular influence of soils on root development necessitates the adaptation and evaluation of imaging methods for multiple substrates. Non-invasive 3D root images in soil can be obtained using magnetic resonance imaging (MRI). Not all substrates, however, are suitable for MRI. Using barley as a model plant we investigated the achievable image quality and the suitability for root phenotyping of six commercially available natural soil substrates of commonly occurring soil textures. The results are compared with two artificially composed substrates previously documented for MRI root imaging.ResultsIn five out of the eight tested substrates, barley lateral roots with diameters below 300 µm could still be resolved. In two other soils, only the thicker barley seminal roots were detectable. For these two substrates the minimal detectable root diameter was between 400 and 500 µm. Only one soil did not allow imaging of the roots with MRI. In the artificially composed substrates, soil moisture above 70% of the maximal water holding capacity (WHCmax) impeded root imaging. For the natural soil substrates, soil moisture had no effect on MRI root image quality in the investigated range of 50–80% WHCmax.ConclusionsAlmost all tested natural soil substrates allowed for root imaging using MRI. Half of these substrates resulted in root images comparable to our current lab standard substrate, allowing root detection down to a diameter of 300 µm. These soils were used as supplied by the vendor and, in particular, removal of ferromagnetic particles was not necessary. With the characterization of different soils, investigations such as trait stability across substrates are now possible using noninvasive MRI.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
  2. Agrosphäre (IBG-3)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)
  2. DPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A) (BMBF-031A053A)

Appears in the scientific report 2017
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2017-11-21, last modified 2022-09-30