Journal Article FZJ-2018-03162

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Microaggregate stability and storage of organic carbon is affected by clay content in arable Luvisols

 ;  ;  ;  ;  ;  ;

2018
Elsevier Science Amsterdam [u.a.]

Soil & tillage research 182, 123 - 129 () [10.1016/j.still.2018.05.003]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: As soil microaggregates (<250 μm, SMA) usually withstand long-term tillage, we hypothesized that i) elevated clay contents in arable soil support aggregation already at microaggregate level, leading to ii) increasing organic carbon (SOC) enrichment in smaller SMA size fractions. To test these hypotheses we sampled the topsoil (5–20 cm) of Luvisols with a long history of agricultural management at the Scheyern experiment station (Germany) in quintuplicates from each of five subsites with different clay contents (19–34%). The field-fresh topsoil was fractionated into macroaggregates (8000–250 μm), large SMA (250–20 μm), and small SMA (<20 μm) and the mass distribution was recorded. In addition, the water stable macroaggregates (>250 μm) were dispersed ultrasonically to study occluded SMA and single building units. Finally, we analyzed the size distribution of the small SMA by laser diffraction analysis. The total mass distribution of free and occluded SMA grouped soils into those with small (19, 22, and 24%) and large (32 and 34%) clay contents. The finer textured soils exhibited larger portions of occluded SMA, with a gamma size distribution of small SMA peaking at 6 μm. Yet the occluded small SMA in the finer textured soils showed an additional enrichment of colloids <1 μm. The SOC was indeed enriched in finer fractions, but more in the small SMA of the coarse textured sites than in the finer textured ones, whereas the opposite was true for the large SMA. We conclude, therefore, that elevated contents of clay-sized particles promote SMA formation and stabilization, therewith shifting SOC enrichment from small to larger SMA.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)
  2. MAD Soil - MAD Soil - Microaggregates: Formation and turnover of the structural building blocks of soils (251268514) (251268514)

Appears in the scientific report 2018
Database coverage:
Medline ; Embargoed OpenAccess ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2018-05-24, last modified 2022-09-30


Published on 2018-05-24. Available in OpenAccess from 2020-05-24.:
Download fulltext PDF Download fulltext PDF (PDFA)
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)