Journal Article FZJ-2018-03427

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Magnetic Detection Structure for Lab-on-Chip Applications Based on the Frequency Mixing Technique

 ;  ;  ;  ;  ;  ;  ;  ;

2018
MDPI Basel

Sensors 18(6), 1747 - () [10.3390/s18061747]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 µg/mL of 20 nm core-sized nanoparticles was achieved without any shielding.

Classification:

Contributing Institute(s):
  1. Bioelektronik (ICS-8)
Research Program(s):
  1. 523 - Controlling Configuration-Based Phenomena (POF3-523) (POF3-523)

Appears in the scientific report 2018
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-3
Workflow collections > Public records
Workflow collections > Publication Charges
ICS > ICS-8
Publications database
Open Access

 Record created 2018-06-12, last modified 2024-06-19