Journal Article FZJ-2018-03576

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Temperature-dependent cycling performance and ageing mechanisms of C 6 /LiNi 1/3 Mn 1/3 Co 1/3 O 2 batteries

 ;  ;  ;  ;  ;  ;  ;

2018
Elsevier New York, NY [u.a.]

Journal of power sources 396, 444 - 452 () [10.1016/j.jpowsour.2018.06.035]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Ageing mechanisms of NMC-based Li-ion (C6/LiNi1/3Mn1/3Co1/3O2) batteries have been investigated under various cycling conditions. The electromotive force (EMF) curves are regularly determined by mathematical extrapolation of voltage discharge curves. The irreversible capacity losses determined from the EMF curves have been investigated as a function of time and cycle number. Parasitic side reactions, occurring at the cathode and anode, determine the charge-discharge efficiency (CDE) and discharge-charge efficiency (DCE), respectively. The recently developed non-destructive voltage analysis method is also applied to the present battery chemistry. The decline of the second plateau of the dVEMF/dQdVEMF/dQ curves upon cycling is considered to be an indicator of graphite degradation whereas the development of the third peak in these derivative curves is considered to be an indicator for electrode voltage slippage. X-ray Photoelectron Spectroscopy (XPS) measurements confirm the deposition of transition-metal elements at the graphite electrode, indicating dissolution of these metals from the cathode. Furthermore, XPS analyses confirm the existence of a Cathode-Electrolyte-Interface (CEI) layer. The outer CEI layer is composed of various compounds, such as carbonate-related Li salts, LiF and NiF2, etc., while the inner CEI layer is dominantly composed of fluoride-related compounds, such as NiF2. Finally, a cathode degradation model including transition-metal dissolution and electrolyte decomposition is proposed

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IEK-9)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2018
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-1
Workflow collections > Public records
IEK > IEK-9
Publications database

 Record created 2018-06-18, last modified 2024-07-12


Restricted:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)