Contribution to a conference proceedings/Contribution to a book FZJ-2018-04189

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Redox Cycling of Ni/YSZ and Ni/GDC Anodes for Metal-Supported Fuel Cells

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2018
European Fuel Cell Forum AG Lucerne, Switzerland
ISBN: ISBN 978-3-905592-23-8

13th European SOFC & SOE Forum 2018, EFCF'18, LucerneLucerne, Switzerland, 3 Jul 2018 - 6 Jul 20182018-07-032018-07-06 Lucerne, Switzerland : European Fuel Cell Forum AG Chapter 12(B1202), 18-27 ()

Abstract: Metal-supported fuel cells (MSCs) are promising candidates for non-stationary applications like auxiliary power units or range extenders in battery electric vehicles. They are attractive due to their potential to withstand fast thermal cycles and vibrations during cell operation. In addition, they have to withstand redox cycles, which might occur during start-up and shut-down of the fuel cell stack. Recently, a novel nickel/gadolinium doped ceria anode (Ni/GDC) was introduced in the metal-supported fuel cell concept of Plansee SE which almost tripled current density compared to the standard cell concept with a Ni/YSZ anode. In the present work, both cell concepts were compared regarding their ability to withstand harsh redox cycles. Therefore, after initial check at 750 °C, cell performance of button cells after controlled redox cycles was investigated at different temperature steps respectively. Re-oxidation temperature of the anodes was varied between 300 and 700 °C for 10 min in air. Afterwards, reduction of the anode was conducted by purging anode side with N2 for 10 min and then going back to standard cell operation conditions with H2 supply. The response of cell performance on redox cycling was recorded continuously. While standard MSCs with Ni/YSZ anode showed a strong degradation after a few cycles if the oxidation was conducted at temperatures above 600 °C, novel MSCs with Ni/GDC anode showed a remarkable resistance against re-oxidation. For a deeper understanding of this behavior, microstructural investigation of the Ni/GDC anode and the adjacent electrolyte was performed within the tested cells by FE-SEM and FIB-SEM 3D structure analysis. Furthermore, electrochemical behavior of Ni/GDC anode was investigated at a larger cycle number of up to 50 redox cycles with 2 h air supply each.


Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 135 - Fuel Cells (POF3-135) (POF3-135)
  2. SOFC - Solid Oxide Fuel Cell (SOFC-20140602) (SOFC-20140602)

Appears in the scientific report 2018
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Dokumenttypen > Bücher > Buchbeitrag
Institutssammlungen > IMD > IMD-2
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-1
Publikationsdatenbank

 Datensatz erzeugt am 2018-07-13, letzte Änderung am 2024-07-08



Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)