Journal Article FZJ-2018-05260

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Parallelization comparison and optimization of a scale-bridging framework to model Cottrell atmospheres

 ;  ;

2018
Elsevier Science Amsterdam [u.a.]

Computational materials science 155, 439 - 449 () [10.1016/j.commatsci.2018.08.055]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Low carbon steels undergo strain aging when heat treated, which causes an increased yield strength that can be observed macroscopically. Such strengthening mechanism is driven by atomistic scale processes, i.e., solute segregation of carbon (C) or nitrogen interstitial atoms. Due to its low solubility, alloying elements can diffuse to defects (e.g., dislocations) and form the so-called Cottrell atmospheres. Consequently, the mobility of defects is strongly reduced because of the interaction with solutes, and higher stresses are needed to unpin them from the Cottrell atmosphere. As C segregation and atomistic motion take place at separate timescales, Classical Molecular Dynamics (MD) and Metropolis Monte Carlo (MC) are coupled in a unified framework to capture collective effects with underlying slow dynamics. The number of degrees of freedom and the need for large computational resources in this simulation requires the choice of an optimal parallelization technique for the MC part of such multi-scale simulations using an unbiased sampling of the configuration space. In the present work,two different parallel approaches for the MC routine applied to the simulation of Cottrell atmospheres are implemented and compared: (i) a manager-worker speculative scheme and (ii) a distributed manager-worker over a cell-based domain decomposition approach augmented by an efficient load balancing scheme. The parallel performance of different Fe-C containing defects with several millions of atoms is analyzed, and also the possible optimization of the efficiency of the MC solute segregation process is evaluated regarding energy minimization.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
  2. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)
  2. Parallel Hybrid Monte Carlo/Molecular Dynamics for Segregation in Solid State Systems (jjsc29_20170501) (jjsc29_20170501)

Appears in the scientific report 2018
Database coverage:
OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-HPC
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2018-09-11, last modified 2021-01-29