Journal Article FZJ-2018-05543

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Investigation of Kinetic Isotopic Fractionation of Water During Bare Soil Evaporation

 ;  ;  ;  ;  ;

2018
Wiley [New York]

Water resources research 54(9), 6909-6928 () [10.1029/2018WR023159]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The kinetic fractionation factor (αK) controls to a large extent the isotopic enrichment of surface waters during evaporation (E). In contrast to the well-known vapor-to-liquid isotopic equilibrium fractionation factor, αK has still not yet been properly characterized for soil water evaporation. In this study, we investigated the αK daily dynamics during a series of three laboratory experiments differing in soil water availability and aerodynamic conditions. For this, we applied a commonly-used isotopic evaporation model and tested it in two different approaches. First, a two-end member mixing model (“Keeling plot”) was fitted to the measured isotopic composition of the laboratory air water vapor to obtain αK. In a second approach, αK was obtained from the slope of the “evaporation line” in a dual isotopic coordinate system. For both methods, the isotopic composition of the soil water was determined non-destructively and online by sampling the soil water vapor with gas-permeable microporous tubing. Results highlighted the limitation of the first approach, as the determination of the isotopic composition of E with the Keeling plot was challenging with the laboratory setup. The second approach provided αK values within the range (α_K^(2_H ) = 1.0132 ±0.0013; α_K^(〖18〗_O ) = 1.0149 ±0.0012) reported in the literature and pointed to the prevalence of turbulent water vapor transport under water-saturated soil conditions, but also at soil water content significantly lower than the saturated value. In a third experiment, temporal dynamics of the atmospheric water vapor intrusion in the topmost soil layer could be observed during an isotopic labeling pulse.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)
  2. IDAS-GHG - Instrumental and Data-driven Approaches to Source-Partitioning of Greenhouse Gas Fluxes: Comparison, Combination, Advancement (BMBF-01LN1313A) (BMBF-01LN1313A)

Appears in the scientific report 2018
Database coverage:
Medline ; OpenAccess ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Engineering, Computing and Technology ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2018-09-28, last modified 2021-01-29