Journal Article FZJ-2018-05778

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Inferring power-grid topology in the face of uncertainties

 ;  ;  ;

2018
Inst. Woodbury, NY

Physical review / E 98(1), 012305 () [10.1103/PhysRevE.98.012305]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: We develop methods to efficiently reconstruct the topology and line parameters of a power grid from the measurement of nodal variables. We propose two compressed sensing algorithms that minimize the amount of necessary measurement resources by exploiting network sparsity, symmetry of connections, and potential prior knowledge about the connectivity. The algorithms are reciprocal to established state estimation methods, where nodal variables are estimated from few measurements given the network structure. Hence, they enable an advanced grid monitoring where both state and structure of a grid are subject to uncertainties or missing information.

Classification:

Contributing Institute(s):
  1. Systemforschung und Technologische Entwicklung (IEK-STE)
Research Program(s):
  1. 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153) (POF3-153)
  2. CoNDyNet - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (PIK_082017) (PIK_082017)
  3. VH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014) (VH-NG-1025_20112014)

Appears in the scientific report 2018
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-STE
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2018-10-11, letzte Änderung am 2023-02-17


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)