Journal Article FZJ-2018-06360

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
The inverse scattering problem for a conductive boundary condition and transmission eigenvalues

 ;

2020
Taylor & Francis Group London

Applicable analysis 99(3), 508-529 () [10.1080/00036811.2018.1504028]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: In this paper, we consider the inverse scattering problem associated with an inhomogeneous media with a conductive boundary. In particular, we are interested in two problems that arise from this inverse problem: the inverse conductivity problem and the corresponding interior transmission eigenvalue problem. The inverse conductivity problem is to recover the conductive boundary parameter from the measured scattering data. We prove that the measured scatted data uniquely determine the conductivity parameter as well as describe a direct algorithm to recover the conductivity. The interior transmission eigenvalue problem is an eigenvalue problem associated with the inverse scattering of such materials. We investigate the convergence of the eigenvalues as the conductivity parameter tends to zero as well as prove existence and discreteness for the case of an absorbing media. Lastly, several numerical and analytical results support the theory and we show that the inside–outside duality method can be used to reconstruct the interior conductive eigenvalues.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)

Appears in the scientific report 2020
Database coverage:
Medline ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2018-11-13, last modified 2021-01-29