Journal Article FZJ-2018-06429

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Hydrologic and Geochemical Research at Pinios Hydrologic Observatory: Initial Results

 ;  ;  ;  ;  ;  ;  ;

2018
GeoScienceWorld Alexandria, Va.

Vadose zone journal 17(1), 180102 () [10.2136/vzj2018.05.0102] special issue: "SPECIAL SECTION: HYDROLOGICAL OBSERVATORIES"

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The Pinios Hydrologic Observatory (PHO) is located in the River Pinios basin, which is one of the most productive basins in Greece. The PHO was established to develop deep knowledge of water balance at the river basin scale and to improve understanding of the major hydrodynamic mechanisms to improve hydrological modeling and ultimately sustainable water resource management. The PHO comprises three meteorological stations, 12 groundwater monitoring sites, and one soil moisture monitoring site, which includes frequency domain reflectometry sensors (SoilNet) and a cosmic-ray neutron sensor (CRNS) probe. Although the PHO was recently established (at the end of 2015), the preliminary findings from data analysis are promising. Calculated reference evapotranspiration (ETo) gradients demonstrate differences regarding their annual cycle, total amount, and altitude level. Moreover, climate analysis indicates nocturnal mountain-valley winds. Groundwater level spatial distribution indicates the dominant recharge mechanisms to the alluvial aquifer system. These findings are also supported by the hydrochemical data analysis (electrical conductivity and, secondarily, NO3 distribution). Locally elevated NO3 concentrations are attributed to agricultural activities and call for review of the adopted farming practices. Results from the soil moisture monitoring site indicate a very good match between the CRNS probe and the average SoilNet data. Future perspectives of the PHO include geophysical surveys to accurately delineate the geometry of the groundwater system, the expansion of groundwater and soil moisture observation networks, and the application of the mGROWA hydrologic model to accurately simulate the hydrological processes in the PHO and upscale in the entire River Pinios basin. Finally, in support of the local farmers, we plan to develop and implement a distributed irrigation programming protocol in the entire area of the PHO.

Keyword(s): Geosciences (2nd)

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2018
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2018-11-14, last modified 2022-09-30