Journal Article FZJ-2018-06987

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Effects of input data aggregation on simulated crop yields in temperate and Mediterranean climates

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2019
Elsevier Science Amsterdam [u.a.]

European journal of agronomy 103, 32 - 46 () [10.1016/j.eja.2018.11.001]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Soil-crop models are used to simulate ecological processes from the field to the regional scale. Main inputs are soil and climate data in order to simulate model response variables such as crop yield. We investigate the effect of changing the resolution of input data on simulated crop yields at a regional scale using up to ten dynamic crop models. For these models we compared the effects of spatial input data aggregation for wheat and maize yield of two regions with contrasting climate conditions (1) Tuscany (Italy, Mediterranean climate) and (2) North Rhine Westphalia (NRW, Germany, temperate climate). Soil and climate data of 1 km resolution were aggregated to resolutions of 10, 25, 50, and 100 km by selecting the dominant soil class (and corresponding soil properties) and by arithmetic averaging, respectively. Differences in yield simulated at coarser resolutions from the yields simulated at 1 km resolution were calculated to quantify the effect of the aggregation of the input data (soil and climate data) on simulation results.The mean yield difference (bias) at the regional level was positive due to the upscaling of productive dominant soil(s) to coarser resolution. In both regions and for both crops, aggregation effects (i.e. errors in simulation of crop yields at coarser spatial resolution) due to the combined aggregation of soil and climate input data increased with decreasing resolution, whereby the aggregation error for Tuscany was larger than for North Rhine Westphalia (NRW). The average absolute percentage yield differences between grid cell yields at the coarsest resolution (100 km) compared to the finest resolution (1 km) were by about 20–30% for Tuscany and less than 15 and 20% for NRW for winter wheat and silage maize, respectively.In the Mediterranean area, the prediction errors of the simulated yields could reach up to 60% when looking at individual crop model simulations. Additionally, aggregating soil data caused larger aggregation errors in both regions than aggregating climate data.Those results suggest that a higher spatial resolution of climate and especially of soil input data are necessary in Mediterranean areas than in temperate humid regions of central Europe in order to predict reliable regional yield estimations with crop models. For generalization of these outcomes, further investigations in other sub-humid or semi-arid regions will be necessary.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)
  2. MACSUR - Modelling European Agriculture with Climate Change for Food Security (2812-ERA-158) (2812-ERA-158)

Appears in the scientific report 2019
Database coverage:
Medline ; Embargoed OpenAccess ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2018-12-04, last modified 2021-01-29


Published on 2018-11-01. Available in OpenAccess from 2020-11-01.:
Download fulltext PDF Download fulltext PDF (PDFA)
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)