Journal Article FZJ-2018-07744

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Amyloid-β Peptide Interactions with Amphiphilic Surfactants: Electrostatic and Hydrophobic Effects

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2018
ACS Publ. Washington, DC

ACS chemical neuroscience 9(7), 1680 - 1692 () [10.1021/acschemneuro.8b00065]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: The amphiphilic nature of the amyloid-β (Aβ) peptide associated with Alzheimer's disease facilitates various interactions with biomolecules such as lipids and proteins, with effects on both structure and toxicity of the peptide. Here, we investigate these peptide-amphiphile interactions by experimental and computational studies of Aβ(1-40) in the presence of surfactants with varying physicochemical properties. Our findings indicate that electrostatic peptide-surfactant interactions are required for coclustering and structure induction in the peptide and that the strength of the interaction depends on the surfactant net charge. Both aggregation-prone peptide-rich coclusters and stable surfactant-rich coclusters can form. Only Aβ(1-40) monomers, but not oligomers, are inserted into surfactant micelles in this surfactant-rich state. Surfactant headgroup charge is suggested to be important as electrostatic peptide-surfactant interactions on the micellar surface seems to be an initiating step toward insertion. Thus, no peptide insertion or change in peptide secondary structure is observed using a nonionic surfactant. The hydrophobic peptide-surfactant interactions instead stabilize the Aβ monomer, possibly by preventing self-interaction between the peptide core and C-terminus, thereby effectively inhibiting the peptide aggregation process. These findings give increased understanding regarding the molecular driving forces for Aβ aggregation and the peptide interaction with amphiphilic biomolecules.

Classification:

Contributing Institute(s):
  1. Strukturbiochemie (ICS-6)
Research Program(s):
  1. 551 - Functional Macromolecules and Complexes (POF3-551) (POF3-551)

Appears in the scientific report 2018
Database coverage:
Medline ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-7
Workflow collections > Public records
ICS > ICS-6
Publications database

 Record created 2018-12-20, last modified 2021-01-30


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)