| Home > Publications database > Finite-Difference Time-Domain simulations of transmission microscopy enable a better interpretation of 3D nerve fiber architectures in the brain |
| Preprint | FZJ-2019-00285 |
; ; ; ; ; ; ;
2018
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/21187
Abstract: Transmission microscopy measurements of histological brain sections provide usually only 2D (in-plane) information about the spatial nerve fibre architecture. To access the third dimension (out-of-plane orientation) of the nerve fibres, more advanced techniques are required, such as Three-dimensional Polarized Light Imaging (3D-PLI) which uses birefringence measurements to derive the 3D fibre orientations. Here, we show that the polarization-independent transmitted light intensity (transmittance) already contains 3D information: we demonstrate in experimental studies of multiple species (rodent, monkey, human) that the transmittance decreases significantly (by more than 50 %) with increasing out-of-plane angle of the nerve fibres. Using finite-difference time-domain simulations, we demonstrate that this decrease is mainly caused by polarization-independent light scattering in combination with the finite numerical aperture of the imaging system, and that the transmittance does not depend on the crossing angle between in-plane fibres. This allows to use the transmittance e.g. to distinguish between in-plane crossing and out-of-plane nerve fibres in 3D-PLI measurements.
|
The record appears in these collections: |