Journal Article FZJ-2019-01374

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Non-linear Least-Squares Optimization of Rational Filters for the Solution of Interior Hermitian Eigenvalue Problems

 ;

2019
Frontiers Media Lausanne

Frontiers in applied mathematics and statistics 5, 5 () [10.3389/fams.2019.00005]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Rational filter functions can be used to improve convergence of contour-based eigensolvers, a popular family of algorithms for the solution of the interior eigenvalue problem. We present a framework for the optimization of rational filters based on a non-convexweighted Least-Squares scheme. When used in combination with a contour based eigensolvers library, our filters out-perform existing ones on a large and representative set of benchmark problems. This work provides a detailed description of: (1) a set up of the optimization process that exploits symmetries of the filter function for Hermitian eigenproblems, (2) a formulation of the gradient descent and Levenberg-Marquardt algorithms that exploits the symmetries, (3) a method to select the starting position for theoptimization algorithms that reliably produces effective filters, (4) a constrained optimization scheme that produces filter functions with specific properties that may be beneficial to the performance of the eigensolver that employs them.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
  2. JARA - HPC (JARA-HPC)

Appears in the scientific report 2019
Database coverage:
Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; DOAJ Seal
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
JARA > JARA > JARA-JARA\-HPC
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2019-02-12, letzte Änderung am 2023-09-18