Journal Article FZJ-2019-02415

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Retrieving the age of air spectrum from tracers: principle and method

 ;

2019
EGU Katlenburg-Lindau

Atmospheric chemistry and physics 19(3), 1767 - 1783 () [10.5194/acp-19-1767-2019]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Surface-emitted tracers with different dependencies on transit time (e.g., due to chemical loss or time-dependent boundary conditions) carry independent pieces of information on the age of air spectrum (the distribution of transit times from the surface). This paper investigates how and to what extent knowledge of tracer concentrations can be used to retrieve the age spectrum. Since the mixing ratios of the tracers considered depend linearly on the transit time distribution, the question posed can be formulated as a linear inverse problem of small dimension. An inversion methodology is introduced, which does not assume a prescribed shape for the spectrum. The performance of the approach is first evaluated on a constructed set of artificial radioactive tracers derived from idealized spectra. Hereafter, the inversion method is applied to outputs of a chemistry–transport model. The latter experiment highlights the limits of inversions using only parent radioactive tracers: they are unable to retrieve fine-scale structures such as the annual cycle. Improvements can be achieved by including daughter decaying tracers and tracers with an annual cycle at the surface. This study demonstrates the feasibility of retrieving the age spectrum from tracers and has implications for transport diagnosis in models and observations.

Classification:

Contributing Institute(s):
  1. Stratosphäre (IEK-7)
Research Program(s):
  1. 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244) (POF3-244)

Appears in the scientific report 2019
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-4
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-7
Publications database
Open Access

 Record created 2019-04-03, last modified 2024-07-12