Journal Article FZJ-2019-02424

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A machine learning approach for automated fine-tuning of semiconductor spin qubits

 ;  ;  ;  ;  ;  ;  ;  ;

2019
American Inst. of Physics Melville, NY

Applied physics letters 114(13), 133102 - () [10.1063/1.5088412]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: While spin qubits based on gate-defined quantum dots have demonstrated very favorable properties for quantum computing, one remaining hurdle is the need to tune each of them into a good operating regime by adjusting the voltages applied to electrostatic gates. The automation of these tuning procedures is a necessary requirement for the operation of a quantum processor based on gate-defined quantum dots, which is yet to be fully addressed. We present an algorithm for the automated fine-tuning of quantum dots and demonstrate its performance on a semiconductor singlet-triplet qubit in GaAs. The algorithm employs a Kalman filter based on Bayesian statistics to estimate the gradients of the target parameters as a function of gate voltages, thus learning the system response. The algorithm's design is focused on the reduction of the number of required measurements. We experimentally demonstrate the ability to change the operation regime of the qubit within 3–5 iterations, corresponding to 10–15 min of lab-time.

Classification:

Contributing Institute(s):
  1. JARA Institut Quanteninformation (PGI-11)
Research Program(s):
  1. 144 - Controlling Collective States (POF3-144) (POF3-144)

Appears in the scientific report 2019
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; National-Konsortium ; NationallizenzNationallizenz ; PubMed Central ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > PGI > PGI-11
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2019-04-04, letzte Änderung am 2021-01-30


Published on 2019-04-02. Available in OpenAccess from 2020-04-02.:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)