Journal Article FZJ-2019-03040

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Modeling of H/D isotope-exchange in crystalline beryllium

 ;  ;  ;  ;

2019
Elsevier Amsterdam [u.a.]

Nuclear materials and energy 20, 100682 - () [10.1016/j.nme.2019.100682]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: A reaction-diffusion model with surface occupation dependent desorption [D. Matveev et al., Nucl. Instr. Meth. B 430 (2018) 23–30] has been updated to handle multiple hydrogen species to simulate hydrogen/deuterium isotope-exchange experiments performed on polycrystalline beryllium samples under ultra-high vacuum laboratory conditions. In the experiments subsequent exposures of a sample to hydrogen and deuterium ion beams in direct and reverse implantation order were followed by thermal desorption spectroscopy measurements under a constant heating rate of 0.7 K/s. The recorded signals of masses 2 to 4 (H2, HD and D2) indicate that the second implanted isotope dominates clearly the low temperature release stage ( ≈ 450 K), while both isotopes show a comparable contribution to the high temperature desorption stage ( ≈ 700 K) with only minor effect of the implantation order attributed to a slightly deeper penetration of deuterium compared to hydrogen. Simulations of the implantation and subsequent thermal desorption of hydrogen isotopes are performed to assess the atomic processes behind the isotope-exchange. Simulations were performed under the assumption that the low temperature release stage is attributed to hydrogen/deuterium atoms retained on effective open surfaces (e.g. interconnected porosity) represented in the simulations by a surface with an effective surface area exceeding the nominal exposed surface area by a factor up to 100. Kinetic de-trapping from vacancies with multiple trapping levels and enhanced desorption at surface coverages close to saturation are addressed in the model as possible mechanisms promoting the isotope-exchange. Simulation results suggest the applicability of the model to describe isotope-exchange processes in crystalline beryllium and give a qualitative explanation of the observed experimental facts.

Classification:

Contributing Institute(s):
  1. Plasmaphysik (IEK-4)
Research Program(s):
  1. 174 - Plasma-Wall-Interaction (POF3-174) (POF3-174)

Appears in the scientific report 2019
Database coverage:
Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Emerging Sources Citation Index ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IFN > IFN-1
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-4
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2019-05-21, letzte Änderung am 2024-07-11


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)