Journal Article FZJ-2019-05823

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Comparison of the Single-Cell Testing, Short-Stack Testing and Mathematical Modeling Methods for a Direct Methanol Fuel Cell

 ;  ;  ;  ;  ;

2021
Elsevier New York, NY [u.a.]

International journal of hydrogen energy 46(6), 4844-4856 () [10.1016/j.ijhydene.2020.02.107]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: In this paper, a comparison between direct methanol fuel cell (DMFC) measurements performed on a single cell and a short-stack, and the results of a mathematical model for a DMFC, is presented. The testing of a short-stack, which consists of 5 cells with an active area of 315 cm2, was performed at various current densities, permeation current densities, and cathode flow rates (CFR) in order to determine the voltage outputs of each cell. Methanol concentration and stack temperature results obtained from short-stack testing were then integrated into the single cell test and single cell mathematical model as the input parameters. For the mathematical modelling, transport equations originating from methanol, water, and oxygen were coupled with the electrochemical relations. Therefore, a comparison between these three methods is made in order to gain a deeper understanding of the effects of the operating parameters on DMFC performance. This study showed that the model could describe experimental results well when lower methanol concentrations (under 1.2 M) and temperature (under 60 °C) values are used as input parameters. The results also show very good agreement at lower methanol permeation rates and therefore lower temperatures. It is found that the voltage output for a given current density is higher for the theoretical model than that of the experimental studies; and the differences in the results can be up to 0.04 V for a cell. Previous article in issue

Classification:

Contributing Institute(s):
  1. Elektrochemische Verfahrenstechnik (IEK-14)
  2. Technoökonomische Systemanalyse (IEK-3)
Research Program(s):
  1. 135 - Fuel Cells (POF3-135) (POF3-135)
  2. 1231 - Electrochemistry for Hydrogen (POF4-123) (POF4-123)
  3. 1111 - Effective System Transformation Pathways (POF4-111) (POF4-111)
  4. 1112 - Societally Feasible Transformation Pathways (POF4-111) (POF4-111)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > ICE > ICE-2
Institutssammlungen > IET > IET-4
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-14
IEK > IEK-3
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2019-11-22, letzte Änderung am 2024-07-09


Published on 2020-03-27. Available in OpenAccess from 2021-03-27.:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)