Journal Article FZJ-2020-00187

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Degradation and Aging Routes of Ni-rich Cathode Based Li-Ion Batteries

 ;  ;  ;

2020
MDPI Basel

Batteries 6(1), 8 - () [10.3390/batteries6010008]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Driven by the increasing plea for greener transportation and efficient integration of renewable energy sources, Ni-rich metal layered oxides, namely NMC, Li [Ni1−x−yCoyMnz] O2 (x + y ≤ 0.4), and NCA, Li [Ni1−x−yCoxAly] O2, cathode materials have garnered huge attention for the development of Next-Generation lithium-ion batteries (LIBs). The impetus behind such huge celebrity includes their higher capacity and cost effectiveness when compared to the-state-of-the-art LiCoO2 (LCO) and other low Ni content NMC versions. However, despite all the beneficial attributes, the large-scale deployment of Ni-rich NMC based LIBs poses a technical challenge due to less stability of the cathode/electrolyte interphase (CEI) and diverse degradation processes that are associated with electrolyte decomposition, transition metal cation dissolution, cation–mixing, oxygen release reaction etc. Here, the potential degradation routes, recent efforts and enabling strategies for mitigating the core challenges of Ni-rich NMC cathode materials are presented and assessed. In the end, the review shed light on the perspectives for the future research directions of Ni-rich cathode materials.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2020
Database coverage:
Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Emerging Sources Citation Index ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-12
Publications database
Open Access

 Record created 2020-01-14, last modified 2024-07-12