Journal Article FZJ-2020-00491

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
TopModel: Template-based protein structure prediction at low sequence identity using top-down consensus and deep neural networks

 ;  ;  ;  ;  ;  ;  ;  ;

2020
Washington, DC

Journal of chemical theory and computation 16(3), 1953-1967 () [10.1021/acs.jctc.9b00825]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Knowledge of protein structures is essential to understand the proteins’ functions, evolution, dynamics, stabilities, interactions, and for data-driven protein- or drug-design. Yet, experimental structure determination rates are far exceeded by that of next-generation sequencing. Computational structure prediction seeks to alleviate this problem, and the Critical Assessment of protein Structure Prediction (CASP) has shown the value of consensus- and meta-methods that utilize complementary algorithms. However, traditionally, such methods employ majority voting during template selection and model averaging during refinement, which can drive the model away from the native fold if it is underrepresented in the ensemble. Here, we present TopModel, a fully automated meta-method for protein structure prediction. In contrast to traditional consensus- and meta-methods, TopModel uses top-down consensus and deep neural networks to select templates and identify and correct wrongly modeled regions. TopModel combines a broad range of state-of-the-art methods for threading, alignment and model quality estimation and provides a versatile work-flow and toolbox for template-based structure prediction. TopModel shows a superior template selection, alignment accuracy, and model quality for template-based structure prediction on the CASP10-12 datasets. TopModel was validated by prospective predictions of the nisin resistance protein NSR protein from S. agalactiae and LipoP from C. difficile, showing far better agreement with experimental data than any of its constituent primary predictors. These results, in general, demonstrate the utility of TopModel for protein structure prediction and, in particular, show how combining computational structure prediction with sparse or low-resolution experimental data can improve the final model.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
  2. John von Neumann - Institut für Computing (NIC)
  3. Strukturbiochemie (ICS-6)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)
  2. 551 - Functional Macromolecules and Complexes (POF3-551) (POF3-551)
  3. Forschergruppe Gohlke (hkf7_20170501) (hkf7_20170501)

Appears in the scientific report 2020
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBI > IBI-7
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
ICS > ICS-6
Publikationsdatenbank
Open Access
NIC

 Datensatz erzeugt am 2020-01-23, letzte Änderung am 2021-01-30


Published on 2020-01-22. Available in OpenAccess from 2021-01-22.:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
(zusätzliche Dateien)
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)