Journal Article FZJ-2020-00688

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Solution Structure and Conformational Flexibility in the Active State of the Orange Carotenoid Protein: Part I. Small-Angle Scattering

 ;  ;  ;  ;  ;  ;  ;

2019
Soc. Washington, DC

The journal of physical chemistry <Washington, DC> / B B, Condensed matter, materials, surfaces, interfaces & biophysical 123(45), 9525 - 9535 () [10.1021/acs.jpcb.9b05071]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Orange carotenoid proteins (OCPs) are photoswitchable macromolecules playing an important role in nonphotochemical quenching of excess energy in cyanobacterial light harvesting. Upon absorption of a blue photon (450–500 nm), OCPs undergo a structural change from the ground state OCPO to the active state OCPR, but high-resolution structures of the active state OCPR are not yet available. Here, we use small-angle scattering methods combined with simulation tools to determine low-resolution structures of the active state at low protein concentrations via two approaches: first, directly by in situ illumination of wild-type OCP achieving a turnover to the active state of >90% and second, by using the mutant OCPW288A anticipated to mimic the active state structure. Data fits assuming the shape of an ellipsoid yield three ellipsoidal radii of about 9, 29, and 51 ± 1 Å, in the case of the ground state OCPO. In the active state, however, the molecule becomes somewhat narrower with the two smaller radii being 9 and only 19 ± 3 Å, while the third dimension of the ellipsoid is significantly elongated to 85–92 ± 5 Å. Reconstitutions of the active state structure corroborate that OCPR is significantly elongated compared to the ground state OCPO and characterized by a separation of the N-terminal and C-terminal domains with unfolded N-terminal extension. By direct comparison of small-angle scattering data, we directly show that the mutant OCPW288A can be used as a structural analogue of the active state OCPR. The small-angle experiments are repeated for OCPO and the mutant OCPW288A at high protein concentrations of 50–65 mg/mL required for neutron spectroscopy investigating the molecular dynamics of OCP (see accompanying paper). The results reveal that the OCPO and OCPW288A samples for dynamics experiments are preferentially dimeric and widely resemble the structures of the ground and active states of OCP, respectively. This enables us to properly characterize the molecular dynamics of both states of OCP in the accompanying paper.

Keyword(s): Polymers, Soft Nano Particles and Proteins (1st) ; Biology (2nd) ; Chemistry (2nd)

Classification:

Contributing Institute(s):
  1. JCNS-FRM-II (JCNS-FRM-II)
  2. Streumethoden (JCNS-2)
  3. Heinz Maier-Leibnitz Zentrum (MLZ)
Research Program(s):
  1. 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) (POF3-623)
  2. 6G15 - FRM II / MLZ (POF3-6G15) (POF3-6G15)
Experiment(s):
  1. KWS-1: Small angle scattering diffractometer (NL3b)

Appears in the scientific report 2019
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > JCNS > JCNS-FRM-II
Institutssammlungen > JCNS > JCNS-2
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-01-29, letzte Änderung am 2021-01-30


Published on 2019-09-26. Available in OpenAccess from 2020-09-26.:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
(zusätzliche Dateien)
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)