Journal Article FZJ-2020-01134

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Front contact optimization for rear-junction SHJ solar cells with ultra-thin n-type nanocrystalline silicon oxide

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
NH, Elsevier Amsterdam [u.a.]

Solar energy materials & solar cells 209, 110471 () [10.1016/j.solmat.2020.110471]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: In this work, ultra-thin n-type hydrogenated nanocrystalline silicon oxide [(nc-SiOx:H (n)] film was used to replace amorphous silicon [a-Si:H (n)] as electron transport layer (ETL) in rear-junction silicon heterojunction (SHJ) solar cell to reduce front parasitic absorption. The contact resistivity between the transparent conductive oxide (TCO) and ultra-thin ETL interface plays an important role on the cell performance. A nanocrystalline silicon (nc-Si:H) contact or seed layer was introduced in the solar cell with ultra-thin nc-SiOx:H and the impact of the nc-Si:H thickness on the cell performance was investigated. To demonstrate scalability, bifacial solar cells with 10 nm ETL were fabricated on the M2 (244 cm2) wafer. The best cell performance is obtained by the solar cell with 5 nm nc-SiOx:H (n) and 5 nm nc-Si:H (n) contact layer and it exhibits open-circuit voltage (Voc) of 738 mV, fill factor (FF) of 80.4%, short-circuit current density (Jsc) of 39.0 mA/cm2 and power conversion efficiency (η) of 23.1% on M2 wafer. Compared to the one with nc-SiOx:H (n), an increase of 3%abs of FF and 0.5%abs of η and lower front contact resistivity is demonstrated for the solar cells with nc-Si:H (n) / nc-SiOx:H (n) double layer, which is caused by the lower energy barrier for electrons, according to the band diagram calculated by the AFORS-HET simulator. A simulation on the solar cell optical and electrical losses was done by the Quokka 3 simulator and shows much lower electrical transport loss and a bit higher front surface transmission loss for the one with double layer than nc-SiOx:H (n) single layer.

Classification:

Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 121 - Solar cells of the next generation (POF3-121) (POF3-121)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IMD > IMD-3
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-5
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-02-19, letzte Änderung am 2024-07-08


Published on 2020-02-17. Available in OpenAccess from 2022-02-17.:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)