Journal Article FZJ-2020-01350

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Poly(Ethylene Oxide)-based Electrolyte for Solid-State-Lithium-Batteries with High Voltage Positive Electrodes: Evaluating the Role of Electrolyte Oxidation in Rapid Cell Failure

 ;  ;  ;  ;  ;

2020
Macmillan Publishers Limited, part of Springer Nature [London]

Scientific reports 10(1), 4390 () [10.1038/s41598-020-61373-9]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Polyethylene oxide (PEO)-based solid polymer electrolytes (SPEs) typically reveal a sudden failure in Li metal cells particularly with high energy density/voltage positive electrodes, e.g. LiNi0.6Mn0.2Co0.2O2 (NMC622), which is visible in an arbitrary, time – and voltage independent, “voltage noise” during charge. A relation with SPE oxidation was evaluated, for validity reasons on different active materials in potentiodynamic and galvanostatic experiments. The results indicate an exponential current increase and a potential plateau at 4.6 V vs. Li|Li+, respectively, demonstrating that the main oxidation onset of the SPE is above the used working potential of NMC622 being < 4.3 V vs. Li|Li+. Obviously, the SPE│NMC622 interface is unlikely to be the primary source of the observed sudden failure indicated by the “voltage noise”. Instead, our experiments indicate that the Li | SPE interface, and in particular, Li dendrite formation and penetration through the SPE membrane is the main source. This could be simply proven by increasing the SPE membrane thickness or by exchanging the Li metal negative electrode by graphite, which both revealed “voltage noise”-free operation. The effect of membrane thickness is also valid with LiFePO4 electrodes. In summary, it is the cell set-up (PEO thickness, negative electrode), which is crucial for the voltage-noise associated failure, and counterintuitively not a high potential of the positive electrode.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; PubMed Central ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-12
Publications database
Open Access

 Record created 2020-03-02, last modified 2024-07-12