Journal Article FZJ-2020-01484

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Zonal Flow Solver (ZFS): a highly efficient multi-physics simulation framework

 ;  ;

2020
Taylor and Francis London [u.a.]

International journal of computational fluid dynamics 34(7-8), 458-485 () [10.1080/10618562.2020.1742328]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Multi-physics simulations are at the heart of today's engineering applications. The trend is towards more realistic and detailed simulations, which demand highly resolved spatial and temporal scales of various physical mechanisms to solve engineering problems in a reasonable amount of time. As a consequence, numerical codes need to run efficiently on high-performance computers. Therefore, the framework Zonal Flow Solver (ZFS) featuring lattice-Boltzmann, finite-volume, discontinuous Galerkin, level set and Lagrange solvers has been developed. The solvers can be combined to simulate, e.g. quasi-incompressible and compressible flow, aeroacoustics, moving boundaries and particle dynamics. In this manuscript, the multi-physics implementation of the coupling mechanisms are presented. The parallelisation approach, the involved solvers and their scalability on state-of-the-art heterogeneous high-performance computers are discussed. Various multi-physics applications complement the discussion. The results show ZFS to be a highly efficient and flexible multi-purpose tool that can be used to solve varying classes of coupled problems.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Workflow collections > Publication Charges
Institute Collections > JSC
Publications database
Open Access

 Record created 2020-03-12, last modified 2022-09-30