Journal Article FZJ-2020-01707

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Spatial heterogeneity of flesh-cell osmotic potential in sweet cherry affects partitioning of absorbed water

 ;  ;  ;  ;  ;

2020
Nature Publ. Group London

Horticulture research 7(1), 51 () [10.1038/s41438-020-0274-8]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: A fleshy fruit is commonly assumed to resemble a thin-walled pressure vessel containing a homogenous carbohydrate solution. Using sweet cherry (Prunus avium L.) as a model system, we investigate how local differences in cell water potential affect H2O and D2O (heavy water) partitioning. The partitioning of H2O and D2O was mapped non-destructively using magnetic resonance imaging (MRI). The change in size of mesocarp cells due to water movement was monitored by optical coherence tomography (OCT, non-destructive). Osmotic potential was mapped using micro-osmometry (destructive). Virtual sections through the fruit revealed that the H2O distribution followed a net pattern in the outer mesocarp and a radial pattern in the inner mesocarp. These patterns align with the disposition of the vascular bundles. D2O uptake through the skin paralleled the acropetal gradient in cell osmotic potential gradient (from less negative to more negative). Cells in the vicinity of a vascular bundle were of more negative osmotic potential than cells more distant from a vascular bundle. OCT revealed net H2O uptake was the result of some cells loosing volume and other cells increasing volume. H2O and D2O partitioning following uptake is non-uniform and related to the spatial heterogeneity in the osmotic potential of mesocarp cells.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; DOAJ Seal ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-04-07, last modified 2021-01-30