Journal Article FZJ-2020-01711

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Impaired context-sensitive adjustment of behaviour in Parkinson’s disease patients tested on and off medication: An fMRI study

 ;  ;  ;  ;  ;  ;

2020
Academic Press Orlando, Fla.

NeuroImage 212, 116674 - () [10.1016/j.neuroimage.2020.116674]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: The brain’s sensitivity to and accentuation of unpredicted over predicted sensory signals plays a fundamental role in learning. According to recent theoretical models of the predictive coding framework, dopamine is responsible for balancing the interplay between bottom-up input and top-down predictions by controlling the precision of surprise signals that guide learning.Using functional MRI, we investigated whether patients with Parkinson’s disease (PD) show impaired learning from prediction errors requiring either adaptation or stabilisation of current predictions. Moreover, we were interested in whether deficits in learning over a specific time scale would be accompanied by altered surprise responses in dopamine-related brain structures. To this end, twenty-one PD patients tested on and off dopaminergic medication and twenty-one healthy controls performed a digit prediction paradigm. During the task, violations of sequence-based predictions either signalled the need to update or to stabilise the current prediction and, thus, to react to them or ignore them, respectively. To investigate contextual adaptation to prediction errors, the probability (or its inverse, surprise) of the violations fluctuated across the experiment.When the probability of prediction errors over a specific time scale increased, healthy controls but not PD patients off medication became more flexible, i.e., error rates at violations requiring a motor response decreased in controls but increased in patients. On the neural level, this learning deficit in patients was accompanied by reduced signalling in the substantia nigra and the caudate nucleus. In contrast, differences between the groups regarding the probabilistic modulation of behaviour and neural responses were much less pronounced at prediction errors requiring only stabilisation but no adaptation. Interestingly, dopaminergic medication could neither improve learning from prediction errors nor restore the physiological, neurotypical pattern.Our findings point to a pivotal role of dysfunctions of the substantia nigra and caudate nucleus in deficits in learning from flexibility-demanding prediction errors in PD. Moreover, the data witness poor effects of dopaminergic medication on learning in PD.

Classification:

Contributing Institute(s):
  1. Kognitive Neurowissenschaften (INM-3)
Research Program(s):
  1. 572 - (Dys-)function and Plasticity (POF3-572) (POF3-572)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > INM > INM-3
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-04-08, letzte Änderung am 2021-01-30


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)