Journal Article FZJ-2020-01847

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Spin-polarized electron transmission through B-doped graphene nanoribbons with Fe functionalization: a first-principles study

 ;  ;  ;

2020
IOP73379 [London]

New journal of physics 22(6), 063022 () [10.1088/1367-2630/ab8cac]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: In this study, we investigate the electron transport properties of a B-doped armchair graphene nanoribbon (AGNR) suspended between graphene electrodes based on first-principles calculations. Our calculations reveal that one of the electron transmission channels of a pristine AGNR junction is closed by the B-doping. We then proceed to explore the effect of the B-doping on the spin-polarized electron transport behavior of a Fe-functionalized AGNR junction. As a result, transmission channels for majority-spin electrons are closed and the spin polarization of the electron transmission is enhanced from 0.60 for the Fe-functionalized AGNR junction to 0.96 for the B- and Fe-codoped one. This observation implies that the codoped AGNR junction can be employed as a spin filter. In addition, we investigate the electronic nature of the transmission suppression caused by the B-doping. A detailed analysis of the scattering wave functions clarifies that a mode modulation of an incident wave arises in the B-doped AGNR part and the incident wave connects to an evanescent wave in the transmission-side electrode. For pristine and Fe-functionalized AGNR junctions, such a mode modulation is not observed and the incident wave connects to a propagating wave in the transmission-side electrode. Tuning of electron transport property by exploiting such a mode modulation is one of promising techniques for designing functionality of spintronics devices. We also discuss the general correspondence between the electron transmission spectrum and the density of states of a junction.

Classification:

Contributing Institute(s):
  1. Quanten-Theorie der Materialien (IAS-1)
  2. Quanten-Theorie der Materialien (PGI-1)
  3. JARA-FIT (JARA-FIT)
  4. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 142 - Controlling Spin-Based Phenomena (POF3-142) (POF3-142)
  2. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)
  3. Hybrid 2D-based interfaces from first principles (jias1e_20190501) (jias1e_20190501)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
JARA > JARA > JARA-JARA\-HPC
Institute Collections > IAS > IAS-1
Institute Collections > PGI > PGI-1
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2020-04-29, last modified 2022-09-30