Journal Article FZJ-2020-02060

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Graph theoretical quantification of white matter reorganization after cortical stroke in mice

 ;  ;  ;  ;

2020
Academic Press Orlando, Fla.

NeuroImage 217, 116873 - () [10.1016/j.neuroimage.2020.116873]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Stroke is a devastating disease leading to cell death and disconnection between neurons both locally and remote, often resulting in severe long-term disability. Spontaneous reorganization of areas and pathways not primarily affected by ischemia is, however, associated with albeit limited recovery of function. Quantitative mapping of whole-brain changes of structural connectivity concerning the ischemia-induced sensorimotor deficit and recovery thereof would help to target structural plasticity in order to improve rehabilitation. Currently, only in vivo diffusion MRI can extract the structural whole-brain connectome noninvasively. This approach is, however, used primarily in human studies. Here, we applied atlas-based MRI analysis and graph theory to DTI in wild-type mice with cortical stroke lesions. Using a DTI network approach and graph theory, we aimed at gaining insights into the dynamics of the spontaneous reorganization after stroke related to the recovery of function. We found evidence for altered structural integrity of connections of specific brain regions, including the breakdown of connections between brain regions directly affected by stroke as well as long-range rerouting of intra- and transhemispheric connections related to improved sensorimotor behavior.

Classification:

Contributing Institute(s):
  1. Kognitive Neurowissenschaften (INM-3)
Research Program(s):
  1. 572 - (Dys-)function and Plasticity (POF3-572) (POF3-572)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > INM > INM-3
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-05-25, letzte Änderung am 2022-09-30