Journal Article FZJ-2020-02146

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Engineering Biocompatible Interfaces via Combinations of Oxide Films and Organic Self-Assembled Monolayers

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
Soc. Washington, DC

ACS applied materials & interfaces 12(14), 17121 - 17129 () [10.1021/acsami.0c02141]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: In this paper, we demonstrate that cell adhesion and neuron maturation can be guided by patterned oxide surfaces functionalized with organic molecular layers. It is shown that the difference in the surface potential of various oxides (SiO2, Ta2O5, TiO2, and Al2O3) can be increased by functionalization with a silane, (3-aminopropyl)-triethoxysilane (APTES), which is deposited from the gas phase on the oxide. Furthermore, it seems that only physisorbed layers (no chemical binding) can be achieved for some oxides (Ta2O5 and TiO2), whereas self-assembled monolayers (SAM) form on other oxides (SiO2 and Al2O3). This does not only alter the surface potential but also affects the neuronal cell growth. The already high cell density on SiO2 is increased further by the chemically bound APTES SAM, whereas the already low cell density on Ta2O5 is even further reduced by the physisorbed APTES layer. As a result, the cell density is ∼8 times greater on SiO2 compared to Ta2O5, both coated with APTES. Furthermore, neurons form the typical networks on SiO2, whereas they tend to cluster to form neurospheres on Ta2O5. Using lithographically patterned Ta2O5 layers on SiO2 substrates functionalized with APTES, the guided growth can be transferred to complex patterns. Cell cultures and molecular layers can easily be removed, and the cell experiment can be repeated after functionalization of the patterned oxide surface with APTES. Thus, the combination of APTES-functionalized patterned oxides might offer a promising way of achieving guided neuronal growth on robust and reusable substrates.

Classification:

Contributing Institute(s):
  1. Bioelektronik (IBI-3)
Research Program(s):
  1. 552 - Engineering Cell Function (POF3-552) (POF3-552)

Appears in the scientific report 2020
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBI > IBI-3
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-05-28, letzte Änderung am 2021-01-30


Published on 2020-03-18. Available in OpenAccess from 2021-03-18.:
Volltext herunterladen PDF
(zusätzliche Dateien)
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)