Journal Article FZJ-2020-02395

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Radiomics in radiation oncology—basics, methods, and limitations

 ;  ;  ;

2020
Springer Medizin Heidelberg

Strahlentherapie und Onkologie 196, 848–855 () [10.1007/s00066-020-01663-3]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Over the past years, the quantity and complexity of imaging data available for the clinical management of patients with solid tumors has increased substantially. Without the support of methods from the field of artificial intelligence (AI) and machine learning, a complete evaluation of the available image information is hardly feasible in clinical routine. Especially in radiotherapy planning, manual detection and segmentation of lesions is laborious, time consuming, and shows significant variability among observers. Here, AI already offers techniques to support radiation oncologists, whereby ultimately, the productivity and the quality are increased, potentially leading to an improved patient outcome. Besides detection and segmentation of lesions, AI allows the extraction of a vast number of quantitative imaging features from structural or functional imaging data that are typically not accessible by means of human perception. These features can be used alone or in combination with other clinical parameters to generate mathematical models that allow, for example, prediction of the response to radiotherapy. Within the large field of AI, radiomics is the subdiscipline that deals with the extraction of quantitative image features as well as the generation of predictive or prognostic mathematical models. This review gives an overview of the basics, methods, and limitations of radiomics, with a focus on patients with brain tumors treated by radiation therapy.

Classification:

Contributing Institute(s):
  1. Physik der Medizinischen Bildgebung (INM-4)
Research Program(s):
  1. 573 - Neuroimaging (POF3-573) (POF3-573)
  2. DFG project 428090865 - Radiomics basierend auf MRT und Aminosäure PET in der Neuroonkologie (428090865)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; DEAL Springer ; Essential Science Indicators ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > INM > INM-4
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-06-24, letzte Änderung am 2023-05-22


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)