Journal Article FZJ-2020-02731

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Self-Epitaxial Hetero-Nanolayers and Surface Atom Reconstruction in Electrocatalytic Nickel Phosphides

 ;  ;  ;

2020
Soc. Washington, DC

ACS applied materials & interfaces 12(19), 21616 - 21622 () [10.1021/acsami.0c03154]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Surface atomic, compositional, and electronic structures play decisive roles in governing the performance of catalysts during electrochemical reactions. Nevertheless, for efficient and cheap transition-metal phosphides used for water splitting, such atomic-scale structural information is largely missing. Despite much effort being made so far, there is still a long way to go for establishing a precise structure–activity relationship. Here, in combination with electron-beam bombardment and compositional analysis, our atomic-scale transmission electron microscopy study on Ni5P4 nanosheets, with a preferential (001) orientation, directly reveals the coverage of a self-epitaxial Ni2P nanolayer on the phosphide surface. Apart from the presence of nickel vacancies in the Ni5P4 phase, our quantum-mechanical image simulations also suggest the existence of an additional NiPx (0 < x < 0.5) nanolayer, characteristic of complex surface atom reconstruction, on the outermost surface of the phosphides. The surface chemical gradient and the core–shell scenario, probably responsible for the passivated catalytic activity, provide a novel insight to understand the catalytic performance of transition-metal catalysts used for electrochemical energy conversion.

Classification:

Contributing Institute(s):
  1. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)
  2. CritCat - Towards Replacement of Critical Catalyst Materials by Improved Nanoparticle Control and Rational Design (686053) (686053)

Appears in the scientific report 2020
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-08-04, last modified 2021-01-30


Published on 2020-04-17. Available in OpenAccess from 2021-04-17.:
Download fulltext PDF Download fulltext PDF (PDFA)
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)