Journal Article FZJ-2020-02813

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Sub-nanoscale atom-by-atom crafting of skyrmion-defect interaction profiles

 ;  ;  ;

2020
Macmillan Publishers Limited, part of Springer Nature [London]

Scientific reports 10(1), 14655 () [10.1038/s41598-020-71232-2]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Magnetic skyrmions are prime candidates as information carriers for spintronic devices due to their topological nature and nanometric size. However, unavoidable inhomogeneities inherent to any material leads to pinning or repulsion of skyrmions that, in analogy to biology concepts, define the phenotype of the skyrmion-defect interaction, generating complexity in their motion and challenging their application as future bits of information. Here, we demonstrate that atom-by-atom manufacturing of multi-atomic defects, being antiferromagnetic or ferromagnetic, permits the breeding of their energy profiles, for which we build schematically a Punnet-square. As established from first-principles for skyrmions generated in PdFe bilayer on Ir(111) surface, the resulting interaction phenotype is rich. It can be opposite to the original one and eventually be of dual pinning-repulsive nature yielding energy landscapes hosting multi-domains. This is dictated by the stacking site, geometry, size and chemical nature of the adsorbed defects, which control the involved magnetic interactions. This work provides new insights towards the development of disruptive device architectures incorporating defects into their design aiming to control and guide skyrmions.

Classification:

Contributing Institute(s):
  1. Quanten-Theorie der Materialien (IAS-1)
  2. Quanten-Theorie der Materialien (PGI-1)
  3. JARA-FIT (JARA-FIT)
  4. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 142 - Controlling Spin-Based Phenomena (POF3-142) (POF3-142)
  2. First-principles investigation of single magnetic nano-skyrmions (jias17_20190501) (jias17_20190501)
  3. First-principles investigation of single magnetic nano-skyrmions (jara0189_20190501) (jara0189_20190501)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; PubMed Central ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
JARA > JARA > JARA-JARA\-HPC
Institute Collections > IAS > IAS-1
Institute Collections > PGI > PGI-1
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2020-08-11, last modified 2022-09-30