Journal Article FZJ-2020-02912

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Operation of SOFC Short-Stacks with Simulated Bio-Syngas: Influence of Model Tars Naphthalene and Phenol

 ;  ;  ;  ;  ;  ;

2020
IOP Publishing Bristol

Journal of the Electrochemical Society 167(12), 124514 - () [10.1149/1945-7111/ababd6]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Operation of solid oxide fuel cells (SOFCs) with bio-syngas from the gasification of biomass is a promising approach to highly efficient and sustainable power generation. At the same time, the coupling is challenging as several biogenic impurities in the bio-syngas have a negative effect on the SOFC. For this paper the impacts of the impurities naphthalene and phenol on SOFC short-stacks were investigated experimentally for the first time. The cell in the stacks were anode-supported SOFCs with Ni/YSZ anode. The experiments were performed at 700 °C under load with simulated bio-syngas consisting of hydrogen, carbon monoxide, carbon dioxide, methane and water vapor. 2 g Nm−3 of naphthalene (350 ppm) caused a pronounced voltage drop and an increase in cell temperature. By analysing the anode off-gas and recording of I–V-curves, it could be shown that naphthalene blocked the electrochemical hydrogen oxidation as well as the reforming of methane and the shift reaction of carbon monoxide. Up to 8 g Nm−3 of phenol (1900 ppm), on the other hand, led to carbon deposition and irreversibly damaged the structure of the anode substrate by metal dusting. This form of degradation was not visible in the electrochemical data during operation.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 135 - Fuel Cells (POF3-135) (POF3-135)
  2. SOFC - Solid Oxide Fuel Cell (SOFC-20140602) (SOFC-20140602)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IMD > IMD-2
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-1
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-08-24, letzte Änderung am 2024-07-11


OpenAccess:
2020-04-23 Operation of SOFC Short-Stacks with Simulated Bio-Syngas - Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Hauser_2020_J._Electrochem._Soc._167_124514 - Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)